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Fluctuating reaction rates and their application to problems of gene expression
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A reduced description is presented for noisy chemical reactions in small systems, such as cells. We show
that, even when the number of molecules of a chemical species is small, its elimination from the description is
possible provided that its characteristic time scale is short. The resulting effective chemical reaction has a
reaction rate which fluctuates in time. The strength of the fluctuations depends on the time scale of the
eliminated species as well as its variance. We derive the master equation of the reduced system, which includes
additional terms of a diffusive kind, yielding a contribution towards fluctuations from the eliminated species.
The stochastic kinetic equation for the reduced system is also derived. Finally, these results are applied to some
problems of gene expression.
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I. INTRODUCTION

A large number of chemical species coexist in a cell, a
many chemical reactions are involved even in individual c
events. Their characteristics are quite heterogeneous.
numbers of molecules of each type are subject to str
variation and distributed from just a few to tens of thousan
The characteristic time scales of the changes in the con
tration of each species are also strongly heterogeneous
vary from seconds to several hours. When some molec
are present in small amounts, this implies stochastic ev
tion for such molecules. Stochastic aspects of cell react
have recently attracted much attention@1–3#. As an example,
the reactions of gene expression have been studied@1,4–11#.
Here, transcription of a single gene gives rise to a few cop
of mRNA which in turn may produce, via the translatio
process, only tens of specific protein molecules. In such s
ations, the classical kinetic description becomes deficient
fluctuations due to the discrete stochastic nature of the c
sidered reactions must be taken into account.

The full stochastic description is provided by a mas
equation that specifies the evolution of the joint probabi
distribution for discrete numbers of all the reacting m
ecules. However, for a cellular system involving a great
riety of reactions, such a description is not efficient and m
be impossible. A coarse-grained description is necessary
such systems. For master equations, coarse-graining wit
spect to volume size is well known@12#. However, this tech-
nique is not applicable to small systems. Thus, coa
graining with respect totime is necessary. Coarse-graining
master equations with respect to time has been studie
detail by Gillespie@13#. He showed that temporal coars
graining is essential for the derivation of stochastic kine
equations~chemical Langevin equations! from master equa-
tions.

The problem that we want to address in this publication
how to eliminate a fast intermediate reaction even when
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molecule number is small. In Sec. II, we develop a reduct
technique by studying a set of reactions that is often
served in biological systems. Temporal coarse-graining is
sential for the reduction. A fast reaction variable can
eliminated even though the average number of molecu
involved is small. The resulting effective chemical reacti
has a reaction rate which fluctuates in time. The strength
the fluctuations is proportional to the time scale of the elim
nated variable as well as to its dispersion. In Sec. III,
derive a master equation for the reduced system, which
cludes additional terms of a diffusive kind, yielding a cont
bution toward fluctuations from the eliminated species. T
corresponding stochastic kinetic equation for the redu
system is also derived.

In Sec. IV, these general results are applied to a mo
genetic system. The model describes the expression
single gene in the absence of any regulation, but explic
resolving both the transcription and translation stages. S
the characteristic time scale of the number of molecules o
given type of mRNA is much faster than that of the prote
products, it is further eliminated, even though the mRN
molecule number is small. We find the approximate effect
master equation of the reduced system and compare its
dictions with the exact solutions which are available for th
simple model. In Sec. V, brief concluding remarks are
fered.

II. ELIMINATION OF A FAST BUT NOISY
CHEMICAL VARIABLE AND THE FLUCTUATING

REACTION RATE

In this section, we study a set of chemical reactions c
sisting of two chemical species with different characteris
time scales. The chemical species with the slower time s
is generated from the other one. The number of molecu
with the faster characteristic time scale can be small. Th
the concentration of this component can be noisy. Even
such a case, we show that the fast chemical component
be eliminated. As a result, a ‘‘fluctuating reaction rate
©2003 The American Physical Society06-1
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which is a reaction rate fluctuating in time, enters into t
description.

Consider chemical reactions consisting of two chemi
speciesX and Y. X is synthesized fromY, Y→X. For Y,
some other synthesis and degradation or depletion react
which we do not specify here, are assumed. Thus, the n
ber ofY molecules is also time dependent. We postulate
the characteristic time scale of the number ofY molecules is
much faster than that ofX molecules. This also suggests th
the chemical reaction for synthesizingX, Y→X, does not
significantly affect evolution of the number of molecules
Y.

Many kinds of biological reactions in a cell can be i
cluded in this type of reaction. Below, the three examples
gene expression, transcriptional regulation, and enzym
reaction are considered.

~1! Gene expression can be described by the transcrip
processG→M1G, M→, and the translation processM
→P1M, P→, in which G stands for a gene,M stands for
its mRNA transcript, andP stands for its protein product@6#.
The characteristic time scale of mRNA is much faster th
that of the protein product. Thus, mRNA corresponds to
fast componentY, and the protein product corresponds toX.

~2! Transcriptional regulation is described by the regu
tion processGi↔R1Ga, and the transcription processGa
→M1Ga, M→, in which Ga andGi are the active and in
active states of the gene, andR is a repressor protein whic
inactivates the gene by binding to its operator region. Wh
the characteristic time scale of the transition between
gene states is faster than that of mRNA, the transcrip
process is included in the present type of reaction. In
case, the active states of the gene and mRNA correspon
Y andX, respectively.

~3! Many enzymatic and signal transduction reactions
described by the Michaelis-Menten schemeS1E→ES→E
1P. Suppose that synthesis and the degradation or deple
reactions are present for the substrateS. Thus, the number o
molecules ofS is time dependent. In such a case, the flu
tuations ofS can affect the generation of product molecu
@14#. If a reaction of the Michaelis-Menten type does n
affect the dynamics of the number of substrate moleculeS
corresponds toY.

Here we are interested in a reduced description of
reaction for the end productX. As we shall see, the fas
chemical components can be eliminated from the reac
scheme, and then we obtain the reduced description. In o
to acquire the reduction method, we consider the chem
reactions betweenX andY,

Y→
k

X1Y, X→
l

, ~1!

in which k and l are rate constants. We assume that so
synthesis and degradation or depletion reactions forY are
present, which are not specified in this section. Thus,
number ofY molecules is also time dependent. For the s
thesis reaction, it is enough to consider the situation in wh
the variation of the number ofY molecules is not influenced
by the synthesis reaction of the molecules ofX. Here, for
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simplicity we choose chemical reactions that do not cha
the number ofY molecules. Thus, any statistical and dynam
cal properties of the number ofY molecules are not affecte
by this reaction.

Let X(t) andY(t) be the numbers ofX andY molecules,
respectively. The evolution equation ofX(t) is given by

Ẋ~ t !5h„kY~ t !,t…2h„lX~ t !,t…. ~2!

Here,h„k(t),t… is a shot noise representing a random ser
of pulses. Whenever a reaction event takes place, a p
appears in the evolution equation. This shot noise proces
a nonhomogeneous Poisson process, in which the probab
of having a pulse per unit time isk(t). Mathematically,
h(k(t),t) is a series ofd functions that are distributed with
frequencyk(t), and the time of occurrence of thed function
is statistically independent. If a reaction occurs at timet i ( i
51,2, . . . ), then h„k(t),t…5( i 51d(t2t i). The number of
reaction events taking place within an interval@ t,t1t# is a
Poisson random variable. Ifn stands for this number, the
probability distribution ofn is given by

probH E
t

t1t

k~ t8!dt85nJ
5

F E
t

t1t

k~ t8!dt8Gn

n!
expS 2E

t

t1t

k~ t8!dt8D ,

~3!

which depends on the functionk(t).
Next, we consider the situation in which the characteris

time scaletc of Y(t) is much shorter than the characteris
time scaletX of X(t), i.e., tX@tc . We do not impose any
condition on the concentration ofY. Thus, the concentration
of Y can be small. Even in this case, it is possible to elim
nate the variableY(t) from Eq. ~2!.

(a) Eliminating the fast chemical component. One of the
ways to eliminate the variableY(t) is to solve the evolution
equation forY(t) within a short time interval and then us
the short interval solution ofY(t) for the evolution ofX(t).
Within the short time interval, ifY(t) changes frequently and
X(t) does not change so much, the detailed behavior ofY(t)
cannot much influence the behavior ofX(t).

In this case, we choose a time scalet that satisfies the
following conditions~similar to the arguments by Gillespi
@13#!. The time scalet is small enough so thatX(t) and
other time dependent parameters change only slightly. On
other hand,t must be so large thatY(t) is stationary. Within
such a time intervalt, we replace the evolution equation fo
Y(t) by the stationary-state properties ofY(t), such as the
mean value, the variance, and the characteristic time sca
Y. Then we have an evolution equation forX(t) that does not
include the detailed behavior ofY(t). The evolution equa-
tion obtained describes the temporally coarse-grained be
ior of X(t).
6-2
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We first consider the synthesis reaction ofX in reaction
~1!. The number of reaction events occurring within a tim
interval @ t,t1t# is then given by

n5E
t

t1t

h„kY~ t8!,t8…dt8. ~4!

This process is a nonhomogeneous Poisson process, in w
the probability that a reaction event takes place depend
time, i.e., the probability that a reaction event takes place
unit time is given bykY(t). Then, in terms of the integral o
Y(t), the probability distribution ofn for a particular real-
ization of Y(t) is given by

probH E
t

t1t

h„kY~ t8!,t8…dt85nUY~ t !J
5

FkE
t

t1t

Y~ t8!dt8Gn

n!
expS 2kE

t

t1t

Y~ t8!dt8D .

~5!

Let y(t) be the short time average ofY(t),

y~ t !5
1

tEt

t1t

Y~ t8!dt8, ~6!

and Pnuy be the probability distribution ofn for a giveny.
Substitutingy(t) into Eq. ~5!, we find that

Pnuy5
@ky~ t !t#n

n!
e2ky(t)t. ~7!

Suppose thatQn is the probability distribution of the
numbern of reaction events occurring within the interv
@ t,t1t#. The distributionQn is obtained by integratingPnuy
over all possible realization ofy. Thus, it is given by

Qn5E PnuyR~y!dy ~8!

whereR(y) is the probability distribution ofy in the interval
@ t,t1t#.

Now we consider an approximation of the probability d
tribution R(y). Note that the properties ofR(y) depend on
t. For instance, the variance of the time averagey decreases
ast increases. As we discussed above, sincet is much larger
than the characteristic time scale ofY(t), tc , a large num-
ber of reaction events of synthesis and degradation or de
tion of Y are occurring within the interval. This implies tha
the central limit theorem is applicable for the temporal av
agey, even though the mean concentrationy(t) itself can be
small. Thus, the time averagey is described by the mea
value and the fluctuation about it and the probability dis
bution R(y) is well described by a Gaussian distributio
Note thatt is still much shorter than the time scale ofX(t).
Hence, in this intervalt, X(t) is far from a stationary state
Sincey is the concentration,y cannot be negative. The con
dition for this is discussed later.
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The variancê dy(t)2& of y is given by

^dy~ t !2&5
1

t2Et

t1tE
t

t1t

C~ t8,t9!dt8dt9, ~9!

whereC(t8,t9) is the time correlation function ofY(t), de-
fined as

C~ t8,t9!5^@Y~ t8!2^Y~ t8!&#@Y~ t9!2^Y~ t9!&#&. ~10!

Note that̂ dy(t)2& depends on the time scale ofY. The vari-
ance^dy(t)2& can be expanded as a series of the powers
1/t for larget, and the leading term is proportional to 1/t.
Let b(t)2 be the coefficient of the leading term of the va
ance ofy(t), i.e., ^dy(t)2&5b(t)2/t1O(1/t2). For larget,
the higher-order terms can be neglected. Therefore, u
a(t)5^y(t)& andb(t)2, the probability distribution ofy(t)
is written as

R~y!5
1

A2pb~ t !2/t
expS 2

@y2a~ t !#2

2b~ t !2/t
D . ~11!

Instead of consideringY explicitly, this R(y) is used for
calculatingQn . We should notice thatb(t)2 depends on the
time scale ofY(t) as well as on the variance ofY(t). As the
time scale ofY increases, the fluctuations become strong

(b) Reduced evolution equation and the fluctuating re
tion rate. The probability thatX is generated per unit time i
kY(t). If the interval@ t,t1t# is much shorter than the cha
acteristic time scale ofX(t), this probability is well approxi-
mated by a short time average ofkY(t). Thus, within such
an interval, the probability is given byky(t). Therefore, in-
stead of Eq.~2!, the evolution equation forX(t) is given by

Ẋ~ t !5h„ky~ t !,t…2h„lX~ t !,t…. ~12!

On the other hand, since the interval@ t,t1t# is much longer
than the characteristic time scale ofY, a large number of
reaction events to changeY have occurred in the interval
Therefore, the distribution of the time averagey is well ap-
proximated by the Gaussian distribution, as we have d
cussed. Then, usingR(y) given by Eq. ~11!, y(t) is ex-
pressed as

y~ t !5a~ t !1b~ t !
1

At
N, ~13!

whereN denotes a statistically independent random varia
which follows a normal distribution with zero mean and un
variance. This implies thaty(t) can be rewritten as

y~ t !5a~ t !1b~ t !j~ t !, ~14!

wherej(t) is the Gaussian random variable with^j(t)&50
and ^j(t8)j(t9)&5d(t82t9). Hence, we have the evolutio
equation forX(t) given by

Ẋ~ t !5h„k@a~ t !1b~ t !j~ t !#,t…2h„lX~ t !,t…, ~15!
6-3



d

io

by

hi
m
tio

tr
ul

d
o

s,

o

th

ion
the
the
sto-
on.

-
f a

For
rate
ical
ime
sed

nt

ts

e

TATSUO SHIBATA PHYSICAL REVIEW E67, 061906 ~2003!
where the evolution ofY(t) does not explicitly appear, an
thusY(t) is eliminated.

This evolution equation implies that the chemical react
is rewritten as

→
k@a~ t !1b~ t !j~ t !#

X, X→
l

, ~16!

where the reaction probability per unit time is given
ky(t)5k@a(t)1b(t)j(t)#. Here, the reaction probability
per unit time is not a constant but fluctuates in time. In t
way, chemical reactions that involve a fast but noisy che
cal concentration can be described by a ‘‘fluctuating reac
rate.’’

Since the reaction probability and the averaged concen
tion y cannot be negative, the time scale should be caref
chosen. For this, the standard deviation ofy must be smaller
than the average value ofy. This condition is always satisfie
if t is sufficiently large. Notice that the standard deviation
y is given byAb2/t. Thus, if the time scale satisfies

t@
b2

a2
, ~17!

this description is valid.
From the viewpoint of nonequilibrium statistical physic

the noise intensityb2 is

b252^dY2&tc , ~18!

wheretc is the characteristic time scale ofY,

tc5E
0

`

f~s!ds, ~19!

andf(t) is the time correlation function defined by

f~ t !5
^Y~ t !Y~0!&2^Y2&

^dY2&
. ~20!

The time scalet determined from the number scaledn
and the fluctuation strengthb should be much larger thantc .
Then it follows that

t'
~dn!2

b2
@tc . ~21!

On this time scale, the time correlation of the reaction rate
synthesizingX is approximated by ad function. This condi-
tion, given by Eq.~21!, implies

dn@A^dY2&tc . ~22!

This condition can be used to estimate the accuracy of
description.
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III. EVOLUTION EQUATIONS FOR REACTIONS
WITH FLUCTUATING REACTION RATES

In the previous section, we introduced a chemical react
with a fluctuating reaction rate. In this section, we derive
evolution equations for such reactions. We first obtain
master equation for such reactions. Then we derive the
chastic kinetic equation and the Fokker-Planck equati
Thus, in this section we consider the chemical reaction

→
k@a~ t !1b~ t !j~ t !#

X, X→
l

~23!

where the production rate ofX fluctuates in time. Here,j(t)
is the Gaussian white noise witĥ j(t)&50 and
^j(t8)j(t9)&5d(t82t9). While we derive the fluctuating re
action rate from a particular reaction scheme, the notion o
fluctuating reaction rate is not restricted to this case.
instance, one may imagine the case in which the reaction
of an enzymatic reaction depends on the internal dynam
state of the enzyme, and the internal state fluctuates in t
according to some evolution rule. This has been discus
extensively from a different point of view@15#.

A. Master equation

Here, we derive the master equation for the reaction~23!.
For simplicity,a andb are supposed to be time-independe
constants.

First we consider only the synthesis process ofX. For this
process, letn be the number of chemical reaction even
taking place within the interval@ t,t1t#. Let Wn(t) be the
probability distribution ofn given by

Wn~ t !5 K l~ t !n

n!
e2l(t)L ~24!

with

l~ t !5E
t

t1t

k@a1bj~s!#ds. ~25!

The distributionWn can be calculated by considering th
generating functionf (s) given by

f ~s!5 (
n50

`

snWn ~26!

5expF ~s21!kat1~s21!2
k2b2

2
tG . ~27!

Using f (s), the distributionWn is obtained as

Wn5
1

n!

dnf ~s!

dsn U
s50

. ~28!

This probability distributionWn gives the transition prob-
ability that the number ofX molecules increases byn in the
interval@ t,t1t#. Let X give the number ofX andPX(t) give
the probability distribution ofX at time t. Then we have
6-4
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PX~ t1t!5(
i 50

`

WiPX2 i~ t !. ~29!

Expanding the right hand side of Eq.~29!, it follows that

PX~ t1t!5F12S ka2
k2b2

2 D tGPX~ t !1~ka2k2b2!

3tPX21~ t !1
k2b2

2
tPX22~ t !1O~t2!. ~30!

This implies the master equation

dPX~ t !

dt
5ka@PX21~ t !2PX~ t !#1

k2b2

2
@PX~ t !22PX21~ t !

1PX22~ t !#, ~31!

where only the synthesis process is taken into account.
ing the degradation process into account also, we obtain
master equation for considered reaction~23! in the form

dPX~ t !

dt
5ka@PX21~ t !2PX~ t !#1

k2b2

2
@PX~ t !22PX21~ t !

1PX22~ t !#1l@~X11!PX11~ t !2XPX~ t !#. ~32!

Here the diffusion like term corresponds to the fluctuatio
of the reaction rate.

We derive this master equation in a formal way. Howev
as we pointed out in the previous section, this descriptio
not valid on a short time scale. Thus, one should choose
appropriate time scale carefully~see the discussion in th
previous section!. Actually, the transition probabilityWn
might be negative if one ignored the condition. Note tha
similar diffusionlike term was obtained in a different way b
Kepler and Elston in Ref.@7# in a special case of transcrip
tional regulation of gene expression.

B. Stochastic kinetic equation and the Fokker-Planck equation

If the number ofX molecules is much larger than unit
the description can be further reduced. In this case, it is p
sible to choose a short interval@ t,t1t# satisfying the follow-
ing conditions. The intervalt is short enough thata(t) and
b(t) are considered as constants inside the interval, and
change in the number ofX is so slight that the reaction rat
of degradation is replaced by its average value within t
interval, i.e., bylx(t) wherex(t) is the time average ofX(t)
in the considered interval. At the same time,t also satisfies
the condition that it is long enough that the number of re
tions taking place within the interval is much larger th
unity, i.e., ka(t)t@1 andlx(t)@1. ~See the discussion in
Ref. @13#.!

We first consider the synthesis reaction ofX. Let n(t)
give the number of chemical reactions taking place in
interval @ t,t1t#. The probability distribution ofn is given
by Eq. ~8! with Eqs. ~7! and ~11!. As we mentioned above
the number of reaction events taking place inside the inte
is much larger than unity. Thus,ka(t)t@1. In this case, the
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probability distribution ofn is approximated by a Gaussia
distribution. The mean value and the variance ofn(t) are
calculated from Eq.~8!. The mean valuên(t)& and the vari-
ance^dn2& are given by

^n~ t !&5ka~ t !t and ^dn~ t !2&5ka~ t !t1k2b~ t !2t.
~33!

Therefore, the probability distribution functionQn is

Qn5
1

A2p@ka~ t !t1k2b~ t !2t#

3expS 2
@n2ka~ t !t#2

2@ka~ t !t1k2b~ t !2t#
D . ~34!

Here,n is a continuous number written as

n~ t !5ka~ t !t1Aka~ t !1k2b~ t !2N/At, ~35!

whereN is a statistically independent random variable obe
ing a normal distribution with the mean being zero and
variance being unity.

For the degradation process, we repeat a similar disc
sion. The number of degradation reaction events occur
inside the interval@ t,t1t# is given by

n5E
t

t1t

h„lX~ t8!…dt8. ~36!

As we have discussed, the interval@ t,t1t# is so short that
the change in the numberX(t) is slight. This condition is
explicitly given by l* t

t1tX(t8)dt8!X(t), or by t!1/l.
Since the change inX(t) is small,X(t) in Eq. ~36! is well
approximated by the time average ofX(t), given by x(t)
5(1/t)* t

t1tX(t8)dt8. Then the number of reactions is

n5E
t

t1t

h„lx~ t !…dt8. ~37!

The interval@ t,t1t# also satisfies the condition that it i
so long that the number of reaction events occurring wit
this interval is much larger than unity, i.e.,lx(t)t@1. Then
the distribution ofn is approximated by a Gaussian distrib
tion. Therefore,n is given by

n5lx~ t !t1Alx~ t !NAt, ~38!

whereN is a statistically independent random variable obe
ing a normal distribution with the mean being zero and
variance being unity.

Therefore, the number ofX molecules at timet1t is

x~ t1t!5x~ t !1ka~ t !t2lxt

1Aka~ t !1k2b~ t !21lxNAt, ~39!
6-5
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TATSUO SHIBATA PHYSICAL REVIEW E67, 061906 ~2003!
whereN is a statistically independent random variable ob
ing a normal distribution with the mean being zero and
variance being unity. This equation then implies the stoch
tic kinetic equation

dx

dt
5ka~ t !2lx1Aka~ t !1k2b~ t !21lxj~ t !, ~40!

where j(t) is a Gaussian white noise witĥj(t)&50 and
^j(t)j(t8)&5d(t2t8).

Finally, the probability distribution ofx obeys the follow-
ing Fokker-Planck equation:

]P~x,t !

]t
52

]

]x S ka~ t !2l2
1

2

]

]x
@ka~ t !1k2b~ t !2

1lx# D P~x,t !. ~41!

Note that this equation can also be obtained by applying
Kramers-Moyal expansion to the master equation given
Eq. ~32!.

IV. GENE EXPRESSION

In this section, we study the gene expression processe
a single gene as an application of the method develope
the previous sections. We show that the transcription re
tions can be eliminated and introduce a ‘‘fluctuating trans
tion rate.’’ Finally, we determine the intensity of the noise
gene expression. The result shows good agreement with
croscopic models and experiments.

The number of mRNA molecules of a given type in a c
is typically less than ten copies. Under these conditions,
cause of the stochastic nature of chemical reactions, the n
ber of protein product molecules is subject to stochastic t
evolution. Several recent experiments on the noise of g
expression indicate the existence of strong noise@9,8#. The
noise of gene expression has been studied theoretic
@1,4,6,7#, suggesting that this noise can be much stron
than Poissonian noise. McAdams and Arkin investigated
elementary gene expression process in detail and discu
the biological relevance of stochastic gene expression@1#.
Thattai and van Oudenaarden studied the noise in the g
expression system using simple models and showed tha
noise in gene expression is linearly proportional to the tra
lation efficiency, that is, to the average number of prot
products produced by one mRNA molecule@6#. This result
was then experimentally verified by the same group@9#.

Several models have been proposed for gene expres
@1,6,11#. Even in the simplest case, a lot of processes
taking place, such as binding of RNA polymerase~RNAP!
and initiation of transcription, transcription progression
RNAP, binding of ribosome and RNase on mRNA, and tra
scription progression of ribosomes@1#. We begin with the
model proposed by Thattai and van Oudenaarden@6#, where
the state of gene expression is described by the numbe
mRNA and protein product molecules. Other processes
cluded in gene expression could affect the behavior, but t
contributions with respect to the noise of gene expression
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minor. Then, a single gene expression iseffectivelywritten as

G→
k0

M1G, M→
l0

,

M→
k

P1M, P→
l

, ~42!

whereG stands for the gene,M stands for its mRNA tran-
script, andP stands for its protein product~Fig. 1!. The
parameters are the transcription ratek0, the translation ratek,
the degradation ratel of the protein products, and the deg
radation ratel0 of mRNA.

In the case of a procaryote, the half-life time of th
mRNA transcript, given by log 2/l0 , is typically a few min-
utes, whereas the half-life time of the protein, given
log 2/l, is about one hour or a few hours. Therefore, for ge
expression processes, we can consider a short time intert
which is much longer than the half-life time of the mRN
transcript but much shorter than the half-life time of the p
tein product. This means thatt satisfies the conditions 1/l
@t@1/l0. Within the time intervalt, many events of syn-
thesis and degradation of the mRNA transcript take pla
Thus, the process of transcription is essentially in a stati
ary state, although the number of mRNA molecules could
a few within a cell, suggesting the existence of strong m
lecular noise. Thus, for gene expression processes, we ex
to apply the method developed in the previous sections,
to eliminate the detailed description of the chemical react
for mRNA.

According to Sec. II, in order to eliminate the reactions
synthesis and degradation of mRNA, we consider the sh
time average of the number of mRNA molecules. In partic
lar, we need the average and the variance of the short
average. LetY be the number of mRNA molecules. The ev
lution equation for the distribution functionP(Y,t) of Y is

]P~Y,t !

]t
5k0@P~Y21,t !2P~Y,t !#1l0@~Y11!P~Y11,t !

2Y P~Y,t !#. ~43!

FIG. 1. A single gene expression in a procaryote. The typi
time scales of degradation of mRNA and protein products
shown in the figure. The parameters are the transcription ratek0, the
translation ratek, the degradation rate of the protein products,l,
and the degradation rate of mRNA,l0.
6-6
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Let y(t) be the time average ofY(t) during the time interval
@ t,t1t#,

y~ t !5
1

tEt

t1t

Y~ t8!dt8. ~44!

By solving Eq.~43!, the average ofy is calculated as

^y&5
k0

l0
~45!

for sufficiently larget such thatY(t) is in a stationary state
The variance ofy is given by

^dy2&5
1

t2Et

t1tE
t

t1t

C~ t8,t9!dt8dt9, ~46!

whereC(t8,t9) is the time correlation function defined by

C~ t8,t9!5^Y~ t8!Y~ t9!&2^Y~ t8!&^Y~ t9!&. ~47!

If t8>t9@0, it follows that

C~ t8,t9!5
k0

l0
e2l0(t82t9).

Substituting thisC(t8,t9) into Eq.~46!, we have the variance
of y(t) for sufficiently larget given by

^dy2&5
2k0

l0
2

1

t
1

k0

l0
2 ~e2l0t21!

1

t2
. ~48!

According to Sec. II, we calculatea andb defined there. As
we have discussed,t is large enough so thatY(t) is in a
stationary state. In the present case, this mean thatt is much
larger than the decay time 1/l0, i.e.,t@1/l0. Then we have

a5
k0

l0
, and b25

2k0

l0
2

. ~49!

Hence, the gene expression is effectively described by

G →
k@a1bj~ t !#

P1G, P→
l

~50!

with Eq. ~49!, wherej is Gaussian white noise witĥj(t)&
50 and ^j(t)j(t8)&5d(t2t8). In this way, a ‘‘fluctuating
translation rate’’ is introduced for the gene expression p
cess by eliminating the transcription process. Note that
strength of stochasticity in the fluctuating translation rate
pends on the characteristic time scale of the change in
number of mRNA transcript molecules.

Let X denote the number of protein product molecul
Using the results of Sec. III, the master equation for reac
~50! is
06190
-
e
-

he

.
n

dPX~ t !

dt
5

k0k

l0
@PX21~ t !2PX~ t !#1l@~X11!PX11~ t !

2XPX~ t !#1
k0k2

l0
2 @PX~ t !22PX21~ t !1PX22~ t !#.

~51!

If the number of protein product molecules is much larg
than unity, i.e.,k0k/l0l@1, a stochastic kinetic equatio
describes the evolution of the number of protein prod
molecules. Letx be that number. As follows from Sec. III
this stochastic kinetic equation is

ẋ5k0b2lx1Ak0b~112b!1lxj~ t ! ~52!

whereb is the translation efficiency, i.e., the mean number
protein product molecules per a single transcript given
b5k/l0. Herej(t) is the Gaussian white random noise wi
^j(t)&50 and ^j(t)j(t8)&5d(t2t8). Since the number of
mRNA molecules fluctuates in time, the noise intensity
larger than that corresponding to a simple Poisson proc
The probability distribution function forx(t) obeys the
Fokker-Planck equation

]P~x,t !

]t
52

]

]x S k0b2lx2
1

2

]

]x
@k0b~112b!

1lx# D P~x,t !. ~53!

Now we solve this equation to study the evolution of t
mean and of the variance of the number of protein prod
molecules. Ifx50 at timet50, the mean value ofx(t) is

^x~ t !&5
k0

l
b~12e2lt! ~54!

while the variance ofx(t) is

^dx~ t !2&5^x~ t !2&2^x~ t !&25@11b~11e2lt!#^x~ t !&.
~55!

The same expression can be obtained by directly solving
master equation, under the condition that the degradation
of the protein is much smaller than that of mRNA@6#. In this
case, the Fano factor, defined as the variance divided by
mean value, is given by

n511b~11e2lt!. ~56!

Hence, the molecular noise is stronger than that correspo
ing to a Poisson distribution. Whent is sufficiently large,n
511b. The solution obtained directly from the reactio
scheme~42! is n511k/(l01l) @6#. In the present case
l0@l. Thus, the reaction scheme with the fluctuating re
tion rate gives a good approximation of the original react
scheme. The strength of the noisen511b was experimen-
tally confirmed by Ozbudaket al. @9#.

In biology textbooks, it has been argued that the lifetim
of mRNA in procaryotes is chosen in such a way that
6-7
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TATSUO SHIBATA PHYSICAL REVIEW E67, 061906 ~2003!
cells respond to environmental change as quickly as poss
But additionally the lifetime of mRNA should be constraine
with respect to the strength of the noise of the gene prod
i.e., the generated protein. If the lifetime of mRNA ge
longer, the noise of the protein product becomes larger.

V. CONCLUDING REMARKS

In this paper, we have studied a reduction method
eliminate a fast intermediate chemical reaction. In order
develop such a method, it is essential to consider coa
graining with respect to time. This method is particula
applicable to small systems, such as reactions in a cell. A
applying this method, we obtained a reduced description
terms of an effective chemical reaction which has a fluctu
ing reaction rate. We derived the master equations for s
reactions. This master equation has additional terms of a
fusive kind. The stochastic kinetic equation and the Fokk
Planck equation were also derived. As an application of
method, we studied a gene expression process. Similar i
would be applicable for reducing the description of mo
complicated situations. In our future work, reduced desc
tions of autoregulation, transcriptional regulation, and op
ons might be obtained, for example@16#. This is necessary
for studying the stochastic behavior of large genetic n
works @10,17#.

Our results indicate that, even if the number of molecu
is small, it is possible to eliminate a component from t
reaction scheme if its characteristic time scale is shorter t
that of the other components. Therefore, when modeling
phenomena, the concentrations of slow chemical compon
.
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should be used as the variables. For instance, when one
ies a system including a genetic network, the protein conc
trations should be used as the variables, and the mRNA n
bers can be eliminated even if they are small. One should
adopt the concentration of mRNA as a variable instead of
protein concentrations@18#.

As we discussed in Sec. II, the strength of the noise t
affects the behavior of the downstream reaction is given
b52^dY2&tc @see Eq.~18!#. Since the relative variation ofY
given by the standard deviation divided by the mean valu
normally proportional to the inverse of the mean valu
A^dY2&/^Y&2'1/A^Y&, the relative noise strength given b
b/a is proportional toAtc /^Y&. This indicates that the in-
crease of the mean value^Y& and the increase of the chara
teristic velocity of the change, 1/tc ~the decrease of the cha
acteristic time scaletc), contributeequally to reducing the
effects of noise on the downstream reaction. In a cell, re
tions constitute cascades. In such a situation, it is impor
how the behavior of upstream chemical species affects
behavior of the downstream reactions. The small numb
themselves indicate strong noise in the concentrations. H
ever, the characteristic time scale is essential as well to c
trol the noise.
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